| Chapter Four | 2 | |-----------------------------------------------------------------------------|---| | 4-1.0 BACKGROUND | 2 | | 1-2.0 MANAGEMENT SYSTEMS | | | 4-2.01 Pavement Management System | 3 | | 4-2.02 Bridge Management System | 4 | | 4-2.03 Safety Management System | 5 | | 4-2.04 Congestion Management System | | | 4-2.05 Public Transportation Management System | | | 4-2.06 Intermodal Transportation System | | | 4-2.06(01) Background | 8 | | 4-2.06(02) Definition | | | 4-2.06(03) Identification of Key Linkages | | | 4-2.06(04) Connecting Links Between the NHS and Major Intermodal Facilities | | | 4-2.06(05) IMS Strategy Recommendations | | | ` ' | | # **List of Figures** # Figure Title 4-2A Facilities with National/Statewide Significance # TRANSPORTATION MANAGEMENT #### 4-1.0 BACKGROUND The *Intermodal Surface Transportation Efficiency Act of 1991* (ISTEA) requires the development and implementation by the State DOT's of six transportation management systems. The impetus for the mandate is the aging of the nation's highway and transit systems. Planning must therefore focus on how to use these systems more effectively and how to address the public's performance expectations. Management systems are a key element in addressing these concerns and effectively managing existing transportation systems and resources. Therefore, Congress included the transportation management systems in ISTEA as follows: - 1. Pavement Management System (PMS) on Federal-aid highways; - 2. Bridge Management System (BMS) on all public highways; - 3. Safety Management System (SMS); - 4. Congestion Management System (CMS); - 5. Public Transportation and Equipment Management System (PTMS); and - 6. Intermodal Management System (IMS). The FHWA/FTA regulations to implement ISTEA provide a common framework for all six management systems. Each management system should reflect a systematic process designed to assist decision makers in selecting cost-effective strategies and actions to improve the efficiency and safety of, and protect the investment in, the nation's transportation infrastructure. The results of the management systems should be incorporated into the Statewide and metropolitan planning processes and into the development of State Transportation Improvement Programs (STIP) and Metropolitan Transportation Improvement Programs (TIP). Each transportation management system should include the elements as follows: - 1. identification of performance measures; - 2. data collection and analysis; - 3. determination of needs; - 4. evaluation and selection of appropriate strategies and actions to address needs; and - 5. evaluation of the effectiveness of the implemented strategies and actions. Note that the *National Highway System Designation Act of 1995* relaxed the requirements of ISTEA by making the management systems optional. However, INDOT has decided to develop and implement all six systems. The next Section briefly describes each of these systems as developed by INDOT. #### 4-2.0 MANAGEMENT SYSTEMS This section presents a brief overview and summary of the six transportation management systems included in the *Intermodal Surface Transportation Efficiency Act (ISTEA) of 1991* as implemented by INDOT. # **4-2.01 Pavement Management System** INDOT initiated the current Pavement Management System (PMS) in 1989 based on the Federal Highway Administration (FHWA) requirements. Subsequent regulation by Congress (ISTEA) and FHWA have further regulated the development and expansion of the PMS procedures. The Pavement Management Section in the Division of Roadway Management is responsible for the development of the PMS for use by INDOT. The Section is responsible for collecting pavement condition data for State highways, for generating information from the data for use in programming preservation projects, and for monitoring the condition of INDOT roads. The information aids in informed decision-making for programming projects, pavement design and pavement material selection. A primary goal of the PMS is to provide the necessary engineering and economic tools to make decisions on preserving INDOT pavements. One of these tools is gathering information to provide quantifiable pavement needs and data on other roadway items such as geometrics and roadside barriers. Cost-effective techniques are used to gather roughness, pavement condition, rutting and video log data on INDOT roads in one pass for the PMS. At the same time, inventories have been constructed from the videos for other systems and INDOT divisions. These include speed limits, no-passing zones, guardrail and end treatments, limited GPS points and data on medians, shoulders and geometrics. The Roadway Reference System is another tool for INDOT developed and maintained by the Pavement Management Section. This system provides a unified location reference system to link road locations with road data. All project location descriptions must include the reference post start and end point on the plans and project descriptions. Both printouts and live data base access are available from PMS to locate the correct reference post for a project. The Roadway Reference System is located on all State highways. It consists of posts placed at nominal 1.6-km intervals on all State highways. All PMS data is recorded by the reference post location method. The sign post numbering is continuous from the beginning of the road to the end. The "zero" or beginning of the road is at its southern or western extremity, and the number increases in the northward or eastward direction. Each bridge on a State highway is signed with its reference post location. Each post is a bench mark for locating projects and features. The reference signs must be located on each construction project and preserved on the project. A Manual detailing the reference post location system is available from the Pavement Management Section. The Pavement Management Section can provide operations research analysis of pavement materials, building techniques and overall pavement performance. This involves examining past and present performance information and projecting trends for the expected life of the pavement for various materials and techniques. This is part of a life-cycle cost analysis which can provide information on the effectiveness of pavement treatments. The Pavement Management Section provides this analysis for determining projects for programming. Contact the Pavement Management Section for details and additional information. ## 4-2.02 Bridge Management System The INDOT Bridge Management System (IBMS) will be used as a planning tool to identify proposed projects with a recommended action, cost, priority ranking and optimized listing based on a set budget. Programming of bridge project is based on recommended actions of the IBMS, district review and recommendations, and integration with other management systems. The Program Development Division is responsible for developing and maintaining the Indiana Bridge Management System in cooperation with Purdue University. An Indiana Bridge Management Advisory Committee (IBMAC) consisting of Metropolitan Planning Organizations (MPO's), county engineers, County Commissioners, Highway Extension Research Project for Indiana Counties and Cities (HERPICC), Consulting Engineers of Indiana, FHWA and INDOT was involved in preparing recommendations and developing processes for the IBMS. Currently, the IBMS is in the development phase. The software will use data collected through the biennial National Bridge Inspection program as input data. The INDOT Bridge Management System is a decision support tool that supplies analysis and summaries of data, uses mathematical models to make predictions and recommendations, and provides the means to efficiently evaluate alternative policies and programs. The System includes a database and an ongoing program for the collection and maintenance of the inventory, inspection, cost and supplemental data needed to support the IBMS. The System also includes a rational and systematic procedure for applying network level analysis and optimization to the bridge inventory. The procedure has the capabilities as follows: - 1. forecast a probable rate of deterioration of bridge elements; - 2. identify feasible actions to improve bridge conditions, safety and serviceability; - 3. estimate the cost of recommended actions; - 4. estimate expected user cost savings for safety and serviceability improvements; - 5. determine least-cost repair and rehabilitation strategies for bridge elements using life-cycle cost analysis; - 6. perform multiperiod optimization; and - 7. generate summaries and reports as needed for the planning and programming process. # **4-2.03** Safety Management System Since the passage of the *National Highway System Designation Act of 1995*, the INDOT Safety Management System (SMS) has been refocused to produce the tools that will select and prioritize Department projects and programs. This effort will aid in efficiently using Safety set-aside funds and aid in justifying other projects. SMS will also produce Statewide statistics for the Highway Performance Monitoring System (HPMS) reporting and will help support and justify larger projects by predicting expected crash reductions due to proposed improvements. The Safety Management System for Indiana will continue to be based on the goal of reducing the number and severity of traffic accidents by ensuring that all opportunities to improve highway safety are identified, considered, implemented as appropriate, and evaluated in all phases of highway planning, design, construction, maintenance and operation. The Department will continue the development of Indiana crash-reduction factors, improve the selection process for hazardous locations and develop procedures for selecting and producing prioritized lists of safety projects and programs. The primary responsibility of the Crash Analysis Unit is to extract traffic crash data from Indiana State Police Crash records and compile summaries of traffic crash data on all Indiana city streets, county roads and INDOT highways. This activity involves maintaining a road-name-to-pseudonumber listing. This listing is the basis for traffic crash locations within the State Police database. The Crash Analysis Unit provides upon request summaries of crash statistics at intersections on roadway sections and Statewide by systems. These summaries by location are used to support the development of the Safety Management System (SMS) and are used by Preliminary Engineering for project scoping. The SMS uses these summaries to determine high-hazard locations and to determine system-wide statistics used to support data requirements of the HPMS. #### 4-2.04 Congestion Management System INDOT is developing a Statewide Congestion Management System (CMS). The CMS will identify present and future congestion levels. The CMS will also propose and evaluate congestion mitigation strategies and will provide recommendations for projects and programs for consideration in the development of Statewide and metropolitan transportation and improvement programs. In addition, each transportation management area (TMA), as part of its transportation planning process, is required to have an operational CMS by October 1997. INDOT will continue supporting the TMAs in this effort. A Statewide report that assesses the level of congestion on all State highways under INDOT jurisdiction has been completed. Refinements to this assessment are continuing. In the future, the CMS will recommend congestion management strategies and methods for their evaluation and selection. It will include a prototype on how to best simulate congested corridors to evaluate mitigation strategies. The CMS will also provide technical support for Indiana's involvement with building an Intelligent Transportation Infrastructure (ITI), which is the marriage of telecommunications, information and computer technologies to relieve traffic congestion. The CMS will be coordinated with the Indiana Public Transportation Management System (PTMS) and the Intermodal Management System (IMS), as discussed in the following Sections. ## 4-2.05 Public Transportation Management System The Indiana Public Transportation Management System (PTMS) will serve as an informational tool to assist the Indiana Department of Transportation and Metropolitan Planning Organizations in making sound investment decisions on existing and future transit assets in Indiana. The PTMS will establish a process for the collection of data on the age, condition, useful life and replacement value of transit facilities and equipment to aid in the selection of the most cost-effective strategies for providing and maintaining transit assets. The overall intent of the PTMS is to facilitate an ongoing, Statewide assessment of the condition of transit assets to identify and prioritize investment needs. The Indiana PTMS will function primarily as an asset management system, as opposed to other management systems that emphasize operational performance. It will be linked with the Congestion Management System and the Intermodal Management System. In general, the PTMS will provide information on the condition and capacity of assets in a given region to support the evaluation of transit alternatives identified by the Congestion Management System. This portion of the Congestion Management System will then support the transit components of the Intermodal Management System. The work elements for completion of the PTMS are as follows: - 1. <u>Definition of PTMS Elements</u>. This task will determine which PTMS elements must be included to meet the needs of INDOT and the MPOs. Transit operators, INDOT and the MPO's will assist in defining the PTMS elements. - 2. <u>Identification of Required Data</u>. INDOT will work with the MPOs and transit operators to identify which types of data are readily available to support the defined elements of the PTMS. - 3. <u>Data Collection</u>. INDOT will collect rolling stock data using the Annual Report Survey form. Facility and equipment information will be acquired through on-site visits with each transit system. INDOT already maintains operating and performance data for transit systems Statewide. - 4. <u>Database Development</u>. Separate databases will be structured and maintained for rolling stock and facilities/equipment. Each database will be compatible with all other management systems and with INDOT's Public Transit Annual Report database. - 5. <u>Condition Assessment Procedure</u>. A consistent procedure for the assessment of the base year condition of transit assets will be developed within the database. This procedure will likely follow a rating approach. This will enable the PTMS to identify current and future conditions of transit assets. Useful life, physical condition and kilometer data will be part of this procedure. - 6. <u>Performance Assessment Procedure</u>. A series of performance measures will also be built into the PTMS database. This process will identify deficiencies associated with the maintenance of transit assets and prevent INDOT from investing in a project that resulted from poor maintenance practices. - 7. <u>Prioritization Procedure</u>. A prioritization procedure will be established in cooperation with the MPOs and transit operators. The items that may be included are service maintenance performance, safety performance, financial performance and compliance with regulatory and statutory requirements (e.g., ADA, Clean Air Act). - 8. <u>Modeling Framework of PTMS</u>. This task will involve the integration of the PTMS database, condition assessment procedure, performance assessment procedure and prioritization procedure to establish a functional management system. The modeling approach will allow these PTMS components to interact and generate output that identifies and prioritizes the capital needs associated with public transportation in Indiana. Operation of the Indiana PTMS will allow INDOT and transit operators to plan for transit capital investments in an integrated and cooperative manner. The PTMS will serve INDOT, MPOs and transit operators with a valuable decision-making tool and, concurrently, provide an information resource for Statewide planning purposes. The net effect of a well-developed and properly implemented PTMS will be improved public transportation performance. This improvement in public transportation will help reduce congestion in urban areas of Indiana, improve travel safety, reduce travel costs to the tax-paying public and improve service to the population with special mobility needs. #### 4-2.06 Intermodal Transportation System # **4-2.06(01)** Background INDOT has developed an Intermodal Management System (IMS) to evaluate the performance of intermodal transportation investments as part of the Statewide transportation planning process. This planning process recognizes the shift from our historical emphasis on individual modes to that of intermodalism as a means of increasing economic competitiveness by minimizing the cost of transportation. The INDOT Intermodal Management System Report (October 1997) was developed in a cooperative effort with major transportation stakeholders. The Program Development Division developed the IMS in conjunction with Freight and Passenger Advisory Subcommittees. These subcommittees contained representatives of other INDOT Divisions, Federal Agencies (FHWA/FTA/FRA/FAA), Metropolitan Development Organizations, Trade Associations, Facility Managers and individual mode operators and transportation providers. #### **4-2.06(02) Definition** The Intermodal Management System (IMS) is a systematic process that provides for the efficient, safe and convenient movement of people and goods through the integration of transportation facilities and systems. The IMS improves the coordination in planning and implementation of air, water and various land-based transportation facilities and systems. Intermodal transportation is viewed from the perspective of the total trip. The IMS planning process identifies transfers and interactions among modes. The IMS is a systematic process of the following: - 1. identifying key linkages among one or more modes of transportation, where the performance of one mode will affect another; - 2. defining strategies for improving the effectiveness of these modal interactions; and - 3. evaluating and implementing these strategies to enhance the overall performance of the transportation system. #### 4-2.06(03) Identification of Key Linkages The National Highway System (NHS) constituted the starting point for the development of the IMS. In 1995, INDOT worked with FHWA to identify both passenger and freight intermodal facilities that qualified under Federal criteria for NHS access to define a network of NHS Intermodal Connectors. The intermodal facilities, NHS and other State jurisdictional highways were analyzed in a geographic information system (GIS). Seventeen major intermodal facilities of National Significance were identified in this effort. In the development of the IMS, an additional twenty-four major intermodal facilities of Statewide Significance were identified in a cooperative effort by the Freight and Passenger Subcommittees as shown in Figure 4-2A, Facilities with National/Statewide Significance, and in the Indiana Intermodal Facilities Map. ## 4-2.06(04) Connecting Links Between the NHS and Major Intermodal Facilities The IMS process developed access links connecting the Intermodal Facilities working with local MPOs and facility managers/operators. Each connecting link may have a State jurisdictional element and a local jurisdictional element. The connecting links between the Intermodal Facilities of National Significance and the NHS may qualify for NHS funding. The connecting links between the NHS and Intermodal Facilities of National or Statewide Significance are awarded points in determining proposed project priority in the Environment, Planning and Engineering Division's Priority Setting Procedures. The connecting links for major intermodal facilities are shown in maps for the regions as follows: - a. Northwest Indiana; - b. Portage; - c. Gary; - d. South Bend; - e. Elkhart; - f. Fort Wayne; - g. Waterloo/Garrett; - h. Lafayette and Remington; - i. Kokomo and Anderson; - j. Indianapolis; - k. Bloomington and Terre Haute; - l. Evansville; and - m. Clark County. # 4-2.06(05) IMS Strategy Recommendations In general, the IMS analysis results conclude that the intermodal deficiencies in Indiana were less severe than in other States due to our well-developed transportation infrastructure. The major area of concern to the IMS Advisory committees primarily addressed safety deficiencies. Based upon the analysis of the performance of the connecting linkage highways, safety action recommendations were made for four intermodal connectors and mobility action recommendations were made for five intermodal connectors. Other strategy recommendations included the need for INDOT to develop a multi-modal and economic development focus in project identification and prioritization (see the October 1997 IMS Report for details).